Random Walks in Weyl Chambers and the Decomposition of Tensor Powers

نویسندگان

  • DAVID J. GRABINER
  • PETER MAGYAR
چکیده

We consider a class of random walks on a lattice, introduced by Gessel and Zeilberger, for which the reflection principle can be used to count the number of K-step walks between two points which stay within a chamber of a Weyl group. We prove three independent results about such "reflectable walks": first, a classification of all such walks; second, many determinant formulas for walk numbers and their generating functions; third, an equality between the walk numbers and the multiplicities of irreducibles in the kth tensor power of certain Lie group representations associated to the walk types. Our results apply to the defining representations of the classical groups, as well as some spin representations of the orthogonal groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on asymptotic enumeration of highest weights in tensor powers of a representation

We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Random Walks Conditioned to Stay in Weyl Chambers of Type C and D

We construct the conditional versions of a multidimensional random walk given that it does not leave the Weyl chambers of type C and of type D, respectively, in terms of a Doob h-transform. Furthermore, we prove functional limit theorems for the rescaled random walks. This is an extension of recent work by Eichelsbacher and König who studied the analogous conditioning for the Weyl chamber of ty...

متن کامل

Möbius Functions and Semigroup Representation Theory Ii: Character Formulas and Multiplicities

We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota’s theory of Möbius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete descr...

متن کامل

Coalescent Random Walks on Graphs

Inspired by coalescent theory in biology, we introduce a stochastic model called ”multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993